been reported (McKenney, Struck, Hildreth \& Fryling, 1987). The structure of the next compound in this series, 1,4 -butanediammonium dinitrate has also been reported (Jaskólski \& Olovsson, 1989).

This work was supported in part by the Office of Naval Research, Mechanics Division.

References

Jaskólski, M. \& Olovsson, I. (1989). Acta Cryst. B45, 7885.

McKenney, R. L. Jr, Struck, S. R., Hildreth, R. A. \& Fryling, J. A. (1987). J. Energ. Mater. 5, 1-25.
Sheldrick, G. M. (1980). SHELXTL80. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 2715-2716

Monoclinic Triphenylphosphine Oxide Hemihydrate

By Paul W. Baures*
SmithKline Beecham Pharmaceuticals L-950, 709 Swedeland Road, King of Prussia, PA 19406, USA

(Received 4 February 1991; accepted 2 April 1991)

Abstract

C}_{18} \mathrm{H}_{15} \mathrm{OP} . \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, M_{r}=287 \cdot 30\), monoclinic, $C 2 / c, a=19.423$ (5), $b=8.478$ (5), $c=18.327$ (5) \AA, $\beta=90.67(2)^{\circ}, \quad V=3017.7(9) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.265 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \quad \quad \mu=$ $15.746 \mathrm{~cm}^{-1}, \quad F(000)=1208, T=223 \mathrm{~K}, \quad R=0.050$ for 1734 reflections with $I>3 \sigma(I)$. The water O atoms sit on a crystallographic twofold axis and are linked by hydrogen bonds to two of the oxide molecules with $\mathrm{O} \cdots \mathrm{O} W$ distances of $2 \cdot 910$ (3) \AA and an $\mathrm{O} \cdots \mathrm{H}-\mathrm{O} W$ angle of $172 \cdot 5(4)^{\circ}$. The torsion angles between the plane of a phenyl ring and the plane generated by the atoms O, P and the ipso C atom in the corresponding ring are $66 \cdot 21,27 \cdot 69$ and 11.61° for rings $\mathrm{Cl}-\mathrm{C} 6, \mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 13-\mathrm{C} 18$, respectively.

Experimental. A crystal of the title compound was obtained from an attempted co-crystallization with an N, N^{\prime}-unsymmetrically disubstituted urea. The crystal measured $0.70 \times 0.20 \times 0.08 \mathrm{~mm}$ and was mounted on a glass fiber using an epoxy resin. Data were collected on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromated $\mathrm{CuK} \alpha$ radiation. Lattice parameters and their e.s.d.'s were derived from the setting angles of 25 reflections (30 $<2 \theta<35^{\circ}$). The space group was unambiguously determined from the systematic absences ($h k l: h+k$ $=2 n ; h 0 l: h, l=2 n$). 3014 reflections ($2<2 \theta<135^{\circ} ; 0$ $<h<23,0<k<10,-21<l<21$) were collected using variable speed $\omega-2 \theta$ scans. Three reflections ($\overline{8} 47,9 \overline{3} 7,6, \overline{2}, \overline{1})$ showed only random variation in intensities over 42.5 h of exposure time. Data were

[^0]corrected for Lorentz and polarization effects. Symmetry equivalent data were averaged, $R_{\text {int }}=0.044$. The structure was solved via direct methods using the program SHELXS86 (Sheldrick, 1985). The refinement was carried out using full-matrix least squares on F employing 1734 reflections with $I>$ $3 \sigma(I)$. Unless otherwise noted, all programs were from a locally modified version of the SDP (Frenz, 1979) software. H atoms were found in a difference Fourier map and were refined with fixed thermal parameters equal to 1.3 times their non- H -atom counterparts. An empirical absorption correction was applied using DIFABS (Walker \& Stuart, 1983) with a θ dependent correction. The min. correction was 0.672 and the max. correction was 1.452 . The average correction was $1 \cdot 009$. No extinction correction was applied. Convergence with anisotropic thermal parameters for the non- H atoms and fixed isotropic thermal parameters for the H atoms was achieved at $R=0.050, w R=0.065, w=1 / \sigma^{2}(F)$ with $\sigma^{2}(F)$ given by the expression $\left[\sigma^{2}\left(I_{c}\right)+(0.05 F)^{2}\right]$, 1734 reflections, 234 variables, $S=1.574,(\Delta / \sigma)_{\max }=$ 0.03 . A final difference Fourier map showed no features outside the range $\pm 0.25 \mathrm{e}^{\AA^{-3}}$. Values of the neutral-atom scattering factors were taken from Cromer (1974). Atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms are given in Table. \dagger Bond lengths and angles are given in Table 2. Fig. 1 shows an ORTEP (Johnson, 1965) drawing of the molecule.

[^1]Table 1. Final positional parameters with e.s.d.'s in parentheses

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
P	$0 \cdot 12465$ (5)	0.0796 (1)	0.09912 (5)	4.04 (2)
0	0.0741 (1)	-0.0167 (3)	0.1396 (1)	4.91 (5)
OW	0.500	0.6930 (4)	0.750	$6 \cdot 77$ (9)
Cl	$0 \cdot 1403$ (2)	0.0075 (4)	0.0083 (2)	3.94 (7)
C2	0.0861 (2)	0.0075 (5)	-0.0423 (2)	4.74 (8)
C3	0.0930 (2)	-0.0617 (5)	-0.1104 (2)	$5 \cdot 38$ (9)
C4	0.1554 (2)	-0.1282 (5)	-0.1293 (2)	$5 \cdot 38$ (9)
C5	$0 \cdot 2099$ (2)	-0.1271 (5)	-0.0805 (2)	$5 \cdot 07$ (8)
C6	0.2026 (2)	-0.0609 (4)	-0.0114 (2)	4.42 (7)
C7	0.0971 (2)	$0 \cdot 2806$ (4)	0.0894 (2)	$4 \cdot 13$ (7)
C8	0.0543 (2)	0.3435 (5)	0.1431 (2)	5.01 (8)
C9	0.0337 (2)	$0 \cdot 5006$ (5)	$0 \cdot 1389$ (2)	5.9 (1)
C10	0.5949 (2)	0.5945 (5)	0.0826 (3)	$6 \cdot 2$ (1)
C11	0.0965 (2)	0.5347 (5)	0.0296 (2)	$5 \cdot 9$ (1)
C12	$0 \cdot 1175$ (2)	0.3777 (4)	0.0322 (2)	$5 \cdot 12$ (9)
C13	$0 \cdot 2078$ (2)	0.0847 (4)	0.1445 (2)	3.94 (7)
C14	$0 \cdot 2201$ (2)	-0.0207 (4)	0.2013 (2)	4.92 (8)
C15	$0 \cdot 2833$ (2)	-0.0196 (5)	$0 \cdot 2372$ (2)	$5 \cdot 85$ (9)
C16	0.3349 (2)	0.0825 (5)	0.2168 (2)	$5 \cdot 36$ (9)
C17	0.3225 (2)	0.1863 (5)	$0 \cdot 1600$ (2)	$5 \cdot 18$ (9)
C18	$0 \cdot 2597$ (2)	$0 \cdot 1877$ (4)	$0 \cdot 1244$ (2)	$4 \cdot 42$ (7)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of the TPPO fragment with e.s.d.'s in parentheses
$\left.\begin{array}{llllll}\mathbf{P} & \mathbf{O} & 1.482(3) & & \text { C7 } & \text { C12 }\end{array}\right) 1.395(5)$

Related literature. Triphenylphosphine oxide (TPPO) has been used as a crystallization aid with various substrates containing hydrogen-bond donors (Etter \& Baures, 1988). There are three known anhydrous polymorphs of TPPO, an orthorhombic form (space group Pbca; Bandoli, Bortolozzo, Clemente, Croatto \& Panattoni, 1970), a monoclinic modification [space group $P 2_{1} / b$ (Gusev, Bokii, Afonia, Timofeeva, Kalinin \& Struchkov, 1973) and $P 2_{1} / a$ setting (Ruban \& Zabel, 1976)] and a second monoclinic modification (space group $P 2_{1} / c$; Spek, 1987). Cold temperature structures of the orthorhombic form (T

Fig. 1. ORTEP (Johnson, 1965) drawing of the title structure with the thermal ellipsoids drawn at the 50% level. The water of hydration has been omitted for clarity.
$=100$ and 153 K) and of the first monoclinic form ($T=100$ and 152 K) were reported by Brock, Schweizer \& Dunitz (1985). A previously reported hemihydrate pseudopolymorph of TPPO is also known (Baures \& Silverton, 1990) as well as a hemiperhydrate pseudopolymorph (Thierbach, Huber \& Preut, 1980).

The author thanks Dr Drake S. Eggleston for helpful discussion.

References

Bandoli, G., Bortolozzo, G., Clemente, D. A., Croatto, U. \& Panattoni, C. (1970). J. Chem. Soc. A, pp. 2778-2780.
Baures, P. W. \& Silverton, J. V. (1990). Acta Cryst. C46, 715-717.
Brock, C. P., Schweizer, W. B. \& Dunitz, J. D. (1985). J. Am. Chem. Soc. 107, 6964-6970.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Etter, M. C. \& Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639-640.
Frenz, B. A. (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Gusev, A. I., Boki, N. G., Afoni, N. N., Timofeeva, T. V., Kalinin, A. E. \& Struchkov, Yu. T. (1973). Zh. Strukt. Khim. 14, 115-125.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Ruban, G. \& Zabel, V. (1976). Cryst. Struct. Commun. 5, 671-677.
Sheldrick, G. M. (1985). In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Spek, A. L. (1987). Acta Cryst. C43, 1233-1235.
Thierbach, D., Huber, F. \& Preut, H. (1980). Acta Cryst. B36, 974-977.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

[^0]: * Present address: Department of Medicinal Chemistry, 8Health Sciences Unit F, 308 Harvard St S.E., Minneapolis, MN 55455, USA.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, least-squares planes, torsion angles and \mathbf{H}-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54130 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.
 © 1991 International Union of Crystallography

